
decoded.avast.io

Binary Reuse of VB6 P-Code
Functions - Avast Threat Labs

by David Zimmer

18-22 minutes

Reusing binary code from malware is one of my favorite topics.

Binary re-engineering and being able to bend compiled code to

your will is really just an amazing skill. There is also something

poetic about taking malware decryption routines and making them

serve you.

Over the years this topic has come up again and again. Previous

articles have included emit based rips [1], exe to dll conversion [2],

emulator based approaches [3], and even converting malware into

an IPC based decoder service [4].

The above are all native code manipulations which makes them

something you can work with directly. Easy to disassemble, easy to

debug, easy to patch. (Easy being a relative term of course :))

Lately I have been working on VB6 P-Code, and developing a

P-Code debugger. One goal I had was to find a way to call a

P-Code function, ripped from a malware, with my own arguments. It

is very powerful to be able to harness existing code without having

to recreate it (including all of its nuances.)

Is this even possible with P-Code? As it turns out, it is possible, and

Binary Reuse of VB6 P-Code Functions - Avast Threat Labs about:reader?url=https://decoded.avast.io/davidzimmer/reusing-vb6-p-co...

1 of 18 5/19/2021, 10:52 AM



I am going to show you how.

The distilled knowledge below is small slice of what was unraveled

during an 8 month research project into the VB6 runtime and

P-code instruction set.

This paper includes 11 code samples which showcase a wide

variety of scenarios utilizing this technique [5].

Note on offsets

In several places throughout this paper there may be VB runtime

offsets presented. All offsets are to a reference copy with md5: 

EEBEB73979D0AD3C74B248EBF1B6E770 [6]. Microsoft was kind

enough to publish debug symbols for this build including those for

the P-Code engine handlers.

Barriers to entry

The VB6 runtime was designed to load executables, dlls, and ocx

controls in an undocumented format. This format contains many

complex interlinked structures that layout embedded forms, class

structures, dependencies etc. During startup the runtime itself also

requires certain initialization steps to occur as it prepares itself for

use.

If we wish to execute P-Code buffers out of the context of a VB6

host executable there are several hurdles we must overcome:

VB Runtime Initialization 

Standard runtime initialization for executables takes place through

the ThunRTMain export. This is the primary entry point for loading

a VB6 executable. This function takes 1 argument that is the

address of the top level VB Header structure. This structure

Binary Reuse of VB6 P-Code Functions - Avast Threat Labs about:reader?url=https://decoded.avast.io/davidzimmer/reusing-vb6-p-co...

2 of 18 5/19/2021, 10:52 AM



contains the full complex hierarchy of everything else within. 

While we can utilize this path for our needs, there are easier ways

to go about it. Starting from ThunRTMain can also create some

problems on process termination so we will avoid it. 

In 2003 when exploring VB6’s ability to generate standard dlls I

found a second path to runtime initialization through the

CreateIExprSrvObj export.

This export is simple to call and automatically performs the majority

of runtime initialization. Some TLS structure fields however are left

out. In testing, most things operate fine. The only errors discovered

occur when trying to use native VB file commands, MsgBox or the

built in App object.

With a little extra leg work it has been found that the TLS structures

can be manually completed to regain access to most of this native

functionality. 

Finally if the P-Code buffer creates COM objects, a manual call to

CoInitilize must also be performed. 

Replicating basic object structures

Once CreateIExprSrvObj has been executed, we can call into

P-Code streams as many times as we want from our loader code.

Structure initialization is minimal and only requires the following

fields: 

Binary Reuse of VB6 P-Code Functions - Avast Threat Labs about:reader?url=https://decoded.avast.io/davidzimmer/reusing-vb6-p-co...

3 of 18 5/19/2021, 10:52 AM



If the P-Code routines utilize global variables then the

codeObj.aModulePublic field will also have to be set to a

writable block of memory. This has been demonstrated in the

globalVar and complex_globals examples. We can even pre-

initialize these variables here if we desire. 

In addition to filling out these primary structures, we also have to

recreate the constant pool as expected by the specific P-Code.

Finally we must also update a structure field in the P-Code to point

to our current object Info structure. 

While this may sound complex, there is a generator utility which

automatically does all of the work for you in the majority of cases. A

more detailed explanation of the following code will be presented in

later sections. 

Finding an entrypoint to transition into
P-Code execution 

Binary Reuse of VB6 P-Code Functions - Avast Threat Labs about:reader?url=https://decoded.avast.io/davidzimmer/reusing-vb6-p-co...

4 of 18 5/19/2021, 10:52 AM



Execution of the VB6 P-Code occurs by calling the

ProcCallEngine export of the VB runtime. The stub below is the

same mechanism used internally by VB compiled applications to

transfer execution between sub functions.

The offset_sub_main argument moved into EDX is the address

of the target P-Code functions trailing structure that defines

attributes of the function. We will discuss this structure in the

following sections. 

The asm stub above shows the default scenario of calling a P-Code

function with no arguments. A video showing this running in a

debugger is available [7]. 

In the decrypt_test example we explore how to call a ripped

function with a complex prototype and a Variant return value.

This example demonstrates reusing an extracted P-Code decoder

from a malware executable. Here we can call the extracted P-Code

function passing it our own data:

Binary Reuse of VB6 P-Code Functions - Avast Threat Labs about:reader?url=https://decoded.avast.io/davidzimmer/reusing-vb6-p-co...

5 of 18 5/19/2021, 10:52 AM



Understanding P-Code function layout 

P-Code functions in compiled executables are linked by a structure

that trails the actual byte code. This structure is called RTMI in the

VB runtime symbols and the reversing community has taken to it as

ProcDscInfo. A partial excerpt of this structure is shown below: 

When we rip a P-Code function from a compiled binary, we must

also extract the configured RTMI structure. ProcCallEngine

requires this information in order to run a P-Code routine

successfully. 

When we relocate the P-Code block outside of the target binary, we

must also update the link to our new object Info table.

This is what is being set in the generated code: 

Binary Reuse of VB6 P-Code Functions - Avast Threat Labs about:reader?url=https://decoded.avast.io/davidzimmer/reusing-vb6-p-co...

6 of 18 5/19/2021, 10:52 AM



Here the rc4 buffer contains the entire ripped function, starting

with the P-Code and then followed by the RTMI structure which

starts at offset 0x3e4. We then patch in the address of our

manually filled out object Info into the RTMI.pObjTable field.

Once this is complete, the P-Code is ready for execution.

Code Generation 

When developing a method such as this, we must start with known

quantities. For our purposes we are writing our own test code which

is done normally in the VB6 Integrated Development

Environment. This code is then extracted using a utility which

generates the C or VB6 source necessary to execute it

independently.

The generator tool we are using in this paper is the free VBDec [8]

P-Code debugger. 

While exploring this technique, the sample code has been

optimized to follow several conventions for clarity. For this research

all code samples were ripped from functions in a single module.

This design was chosen so that all sub function access occurs

through the ImpAdCall* opcodes which draw directly against

function pointers in the const pool. 

Code taken from instanced form or class compilation units would

require support to replicate VTable layouts for the *Vcall

opcodes. While this can be done I will leave that as future work for

now.

Samples are available that make extensive use of callbacks to

Binary Reuse of VB6 P-Code Functions - Avast Threat Labs about:reader?url=https://decoded.avast.io/davidzimmer/reusing-vb6-p-co...

7 of 18 5/19/2021, 10:52 AM



integrate tightly with the host code. This is useful for integrating

debug output through the C host in a simple manner. 

Callbacks are accessed through the standard VB API Declare

syntax which is a core part of the language and is well documented.

Below are examples of sending both numeric and string debug info

from the P-Code to the host. 

Giving VB direct access to the host functions, is as simple as

setting their address in the corresponding constant pool slot. 

Ripping functions with VBDec is simple. Simply right click on the

function in the left hand treeview and choose the Rip menu

option. VBDec will generate all of the embedding data for you.

Multiple functions can be ripped at once by right clicking on the top

level module name. 

Binary Reuse of VB6 P-Code Functions - Avast Threat Labs about:reader?url=https://decoded.avast.io/davidzimmer/reusing-vb6-p-co...

8 of 18 5/19/2021, 10:52 AM



A corresponding const pool will also be auto-generated along with

stubs to update the object Info pointers and asm stubs to call

interlinked sub functions.

Once extraction/generation is complete it is left up to the developer

to integrate the data into one of the sample frameworks provided.

A spectrum of samples are provided ranging from very simple, to

quite complex. Samples include:

Sample Description

firstTest simple addition test

globalVar global variables test

structs passing structs from C to P-Ccode

two_funcs interlink two P-Code functions

ConstPool test decoding a binary const pool entry

lateBinding late bind sapi voice example

earlyBinding early bind sapi voice example

decrypt_test P-Code decryptor w/ complex prototype

Variant Data C host returns variant types from callback to

P-Code.

benchmark RC4 benchmarking apps in C/P-Code code

and straight C

Understanding the Const Pool 

Binary Reuse of VB6 P-Code Functions - Avast Threat Labs about:reader?url=https://decoded.avast.io/davidzimmer/reusing-vb6-p-co...

9 of 18 5/19/2021, 10:52 AM



Each compilation unit such as a module, class, form etc gets its

own constant pool which is shared for all of the functions in that file.

Pool entries are built up on demand as the file is processed by the

compiler from top to bottom.

The constant pool can contain several types of entries such as: 

string values (BSTRs specifically) 

VB method native call stubs 

API import native call stubs 

COM GUIDs

COM CLSID / IID pairs held in COMDEF structures 

CodeObject base offsets (not applicable to our work here) 

internal runtime COM objects filled out at startup (not supported) 

VBDec is capable of automatically deciphering these entries and

figuring out what they represent. Once the correct type has been

determined, it can generate the C or VB source necessary to fill out

the const pool in the host code. The constant pool viewer form

allows you to manually view these entries.

In testing it has been performing extremely well outputting complete

const pools which require little to no modification. 

Binary Reuse of VB6 P-Code Functions - Avast Threat Labs about:reader?url=https://decoded.avast.io/davidzimmer/reusing-vb6-p-co...

10 of 18 5/19/2021, 10:52 AM



For callback integration with the host, if you use “dummy” as the dll

name, it will automatically be assumed as a host callback.

Otherwise it will be translated literally as a

LoadLibrary/GetProcAddress call.

Some const pool entries may show up as Unknown. When you

click on a specific entry the raw data at that offset will be loaded into

the lower textbox. If this data shows all 00 00 00 00’s then this

is a reference to an internal VB runtime COM object that would

normally be set to a live instance at initialization.

This has been seen when using the App Object. Normally this

would be set @6601802F inside _TipRegAppObject function of

the runtime on initialization. These types of entries are not currently

supported using this technique (and would not make sense in our

context anyways.) 

Interlinked sub functions are supported. A corresponding native

stub will be generated along with an entry in the const pool for it. 

Early binding and late binding to COM objects is also supported.

Late binding is done entirely through strings in the const pool. For

early binding you will seen a COMDEF structure and CLSID / IID

data automatically generated.

The following is taken from the early binding sample which loads

the Sapi.SpVoice COM object. 

Binary Reuse of VB6 P-Code Functions - Avast Threat Labs about:reader?url=https://decoded.avast.io/davidzimmer/reusing-vb6-p-co...

11 of 18 5/19/2021, 10:52 AM



Generation of this code is generally automatic by VBDec but there

may be times where the tool can not automatically detect which

kind of const pool entry is being specified. In these cases you may

have to manually explore the const pool and extract the data

yourself.

In the above scenario the file data at the const pool address may

look similar to the following:

If we visualize this as a COMDEF structure we can see the values 0, 

0x401230, 0x401240, 0. Looking at the file offsets for these

virtual addresses we find the GUIDs given above. 

String entries are held as BSTRs, which is a length prefixed

unicode string. Since we are in complete control of the const pool,

and BSTRs can encapsulate binary data. It is possible to include

encrypted strings directly in the const pool using

SysAllocStringByteLen. The binary_ConstPool* samples

demonstrate this technique. You can also dynamically swap out

const pool entries to change functionality as the P-Code runs. An

Binary Reuse of VB6 P-Code Functions - Avast Threat Labs about:reader?url=https://decoded.avast.io/davidzimmer/reusing-vb6-p-co...

12 of 18 5/19/2021, 10:52 AM



example of this is found in the early bind sample. 

Note: It is important to use the SysAlloc* string functions to get

real BSTR’s for const pool entries. As the strings get used by the

runtime, it may try to realloc or release them.

Extended TLS Initialization

The VB6 runtime stores several key structures in Thread Local 

Storage (TLS). Several functions of the runtime require these

structures to be initialized. These structures are critical for VB error

handling routines and can also come into play for file access

functions.

Below is the code for the rtcGetErl export. This function

retrieves the user specified error line number associated with the

last exception that occurred.

From this snippet of code we can see that the runtime stores the

TLS slot value at offset 66110000. Once the actual memory

address is retrieved with TlsGetValue The structure field 0x98 is

then returned as the stored last error line number. In this manner

we can begin to understand the meaning of the various structure

offsets.

Even without a full analysis of the complete 0xA8 byte structure we

can compare the values seen between a fully initialized process

with those initialized through the CreateIExprSrvObj export.

Once diffed 2 main empty slots are observed which normally point

Binary Reuse of VB6 P-Code Functions - Avast Threat Labs about:reader?url=https://decoded.avast.io/davidzimmer/reusing-vb6-p-co...

13 of 18 5/19/2021, 10:52 AM



to other allocations.

field 0x18 – normally set @ 66015B25 in

EbSetContextWorkerThread

field 0x48 – normally set @ 66018081 in

RegAppObjectOfProject

Field 0x48 is used for access to the internal VB App. COM object.

This object does not make sense to use in our scenario and does

not trigger any exceptions if left blank. If we had to replicate the COM

object for compatibility with existing code we could however insert a

dummy object.

The allocation at offset 0x18 is only required if we wish to use built

in VB file operation commands or the MsgBox function.

If demanded for compatibility with ripped code, It was interesting to

see if a manual allocation would allow the runtime to operate

properly.

The following code was created to dynamically lookup the TLS slot

value, retrieve the tlsEbthread memory offset and then manually

link in a new allocation to the missing 0x18 field.

Binary Reuse of VB6 P-Code Functions - Avast Threat Labs about:reader?url=https://decoded.avast.io/davidzimmer/reusing-vb6-p-co...

14 of 18 5/19/2021, 10:52 AM



Once the above code was integrated full access was restored to the

native VB file access functions. Again this extended initialization is

not always required.

Debugging integration’s 

When testing this technique it is best to start with your own code

that you control. This way you can get familiar with it and develop a

feel for working with (and recognizing) the different

function prototypes.

The first step is to write and debug your VB6 code as normal in the

VB6 IDE. In preparation for running as a byte buffer, you can then

pepper the VB code with progress callbacks to API Declare routines

which normally access C dll exports.. You don’t actually have to

write the dll, but you can. The calls are identical when hosted

internally from a native C loader (or even a VB hosted Addressof

callback routine). 

If you are calling into a P-Code function with a specific prototype,

this is the trickiest part of the integration. Samples are available

which pass in int, structures, references, Variants,

bools and byte arrays. You will have to be very aware if

Binary Reuse of VB6 P-Code Functions - Avast Threat Labs about:reader?url=https://decoded.avast.io/davidzimmer/reusing-vb6-p-co...

15 of 18 5/19/2021, 10:52 AM



arguments are being passed in ByVal, or the default

ByRef (pointers).

Also pay attention to the function return types. If no argument/return

type is defined, it defaults to a COM Variant. VB functions receive

variant return values by pushing an extra empty one onto the stack

before calling the function. Simple numeric return values are

passed back in EAX as normal.

When interacting with callbacks make sure the callbacks are

defined as __stdcall. All of the standard VB6 <–> C

development knowledge applies. You can cut your teeth on these

rules by working with standard C dlls and debugging in Visual

Studio from the dll side while launching a VB6 exe host.

When in doubt you can create simple tests to debug just the

function prototypes. For the complex prototype decryptor sample

given above, I had the VB6 sub main() code call the rc4

function with expected parameters to test it in its natural

environment. I could then debug the VB6 executable to watch the

exact stack parameters passed to develop more insight into how to

replicate it manually from my C loader.

This can be done with a native debugger by setting a breakpoint

@6610664E on the ImpAdCallFPR4 handler in the VB runtime.

Here you could examine the stack before entry into the target

P-Code function. VBDec’s P-Code debugger is also convenient for

this task.

When debugging it is best to have the reference copy of the VB

runtime in the same directory as the target executable so that all of

your offsets line up with your runtime disassembly with debug

symbols. If you use IDA as your debugger, start with the

Binary Reuse of VB6 P-Code Functions - Avast Threat Labs about:reader?url=https://decoded.avast.io/davidzimmer/reusing-vb6-p-co...

16 of 18 5/19/2021, 10:52 AM



disassembly of the VB runtime and set the target executable in the

debugger options. Asm focused debuggers such as Olly or

x64dbg are highly recommended over Visual Studio which is

primarily based around source code debugging. 

Conclusion:

When working on malware analysis it is a common task to have to

interoperate with various types of custom decoding routines. There

are multiple approaches to this. One can sit down and reverse

engineer the entire routine and make sure your code is 100%

compatible, or you can try to explore rip based techniques. 

Ripping decoders is a fairly common task in my personal playbook.

While researching the internals of the VB runtime it was a natural

inquiry for me to see if the same concept could be applied to

P-Code functions. 

With some experimentation, and a suitable generator, this

technique has proven stable and relatively easy to implement.

These experiments have also deepened my insights into how the

various structures are used by the runtime and my appreciation for

how tightly VB6 can integrate with C code. 

Hopefully this information will give you a new arrow to add to your

quiver, or at least have been an interesting ride. 

[1] Emit based rip

[2] Using an exe as a dll

[3] Running byte blobs in scdbg

[4] Malware IPC decoder service

[5] Code samples

[6] VB6 runtime with symbols

Binary Reuse of VB6 P-Code Functions - Avast Threat Labs about:reader?url=https://decoded.avast.io/davidzimmer/reusing-vb6-p-co...

17 of 18 5/19/2021, 10:52 AM



[7] VB6 internals video

[8] VBDec P-Code Debugger

Binary Reuse of VB6 P-Code Functions - Avast Threat Labs about:reader?url=https://decoded.avast.io/davidzimmer/reusing-vb6-p-co...

18 of 18 5/19/2021, 10:52 AM


